The Influence of Lexical Frequency, Phonotactic Probability, and Neighborhood Density on WORD IDENTIFICATION

Chelsea Sanker

SANKER@STANFORD.EDU STANFORD UNIVERSITY VP-V-575-2169

CogScl 2023

Methodology

Participants: 64 native speakers of American English completed the study online Stimuli: 80 monosyllabic CVC English words combined with speech-shaped noise at -3 SNR
Task: Identifying each stimulus as matching one of two written words differing only in the vowel

- e.g. hear back and identify it as either "back" or "bake"
- Pairs of response options were chosen to separately control their relative lexical frequency, neighborhood density, and phonotactic probability

Main Results

	Estimate	SE	z	p-value
(Intercept)	2.01	0.205	9.84	<0.001
log Lexical Frequency	0.179	0.0527	3.39	<0.001
Neighborhood Density	-0.239	0.0748	-3.2	0.00138
Phonotactic Probability	0.59	0.0674	8.76	<0.001

Table 1: Mixed effects logistic regression model for accuracy.

	Estimate	SE	z	p -value
(Intercept)	2.73	0.33	8.26	<0.001
log Lexical Frequency	0.184	0.0651	2.83	0.00471
Neighborhood Density	-0.0639	0.0105	-0.611	0.542
Phonotactic Probability	0.113	0.0967	1.17	0.242
Vowel /æ/	-1.05	0.31	-3.38	<0.001

Table 2:Mixed effects logistic regression model for accuracy, including vowel quality as a factor. Reference Vowel $=/ a /$; for space reasons, not all rows for this factor are shown.

ei-i	
i	
ei	

Characteristic

- LexFreq
- ND
- PhonProb

Figure 1: Z-scored lexical frequency, neighborhood density, and phonotactic probability aggregated by vowel. Vowel quality is a major predictor of these characteristics.

Figure 2: Accuracy by vowel pair, vowel and phoneme probability of that vowel.
Accuracy varied substantially based on vowel quality and by the vowels in the two response options. However, directional confusions were not strongly predicted by the relative probability of the vowels.

Conclusions

- Evidence for independent effects of lexical frequency, neighborhood density, and phonotactic probability, observable in a forced choice task
- What is the direction of causality in the relationship between acoustic confusability and phoneme frequency?
- More common vowels might be selected as responses more often because they build up activation faster
- Vowels which are more difficult to perceive are more prone to sound change, reducing their overall probability

Selected References

